امتحانات الشهادة الثانوية العامة فرع: العلوم العامة

Similar documents
Deduce, from this equality, the area of the region bounded by (E).

دورة الؼام اهتحا ات الشهادة الثا ىية الؼاهة وزارة التربية والتؼلين الؼالي اإلنث يي 07 حسيراى 7102 فرع: الؼلىم الؼاهة

امتحانات الشھادة الثانویة العامة الفرع: علوم عامة المدة أربع ساعات

PURE MATHEMATICS A-LEVEL PAPER 1

1985 AP Calculus BC: Section I

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

امتحانات الشھادة الثانویة العامة الفرع : علوم عامة مسابقة في مادة الریاضیات المدة أربع ساعات

اهتحانات الشهادة الثانىية العاهة الفرع : علىم عاهة هسابقت في هادة الزياضياث االسن: الودة أربع ساعاث

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

اهتحانات الشهادة الثانىية العاهة الفرع : علىم عاهة هسابقت في هادة الزياضياث الودة أربع ساعاث

+ x. x 2x. 12. dx. 24. dx + 1)

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

امتحانات الشهادة الثانوية العامة الفرع : العلوم العامة مسابقة في مادة الفيزياء الرقم:

This exam is formed of three exercises in three pages numbered from 1 to 3. The use of a non-programmable calculator is recommended.

WBJEEM MATHEMATICS. Q.No. μ β γ δ 56 C A C B

This exam is formed of three exercises in three pages. The Use of non-programmable calculators is allowed.

H2 Mathematics Arithmetic & Geometric Series ( )

Chapter At each point (x, y) on the curve, y satisfies the condition

امتحانات الشهادة الثانوية العامة الفرع: علوم عامة مسابقة في مادة الكيمياء المدة: ساعتان

امتحانات الشهادة الثانوية العامة فرع العلوم العامة مسابقة في مادة الفيزياء المدة ثالث ساعات

This exam is formed of four exercises in four pages numbered from 1 to 4. The use of non-programmable calculator is recommended,

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

1973 AP Calculus BC: Section I

امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة مسابقة في مادة الفيزياء المدة: ساعتان

Student s Printed Name:

Problem Value Score Earned No/Wrong Rec -3 Total

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

االسن: الرقن: This exam is formed of three obligatory exercises in two pages. Non- programmable calculators are allowed.

1973 AP Calculus AB: Section I

NET/JRF, GATE, IIT JAM, JEST, TIFR

( ) ( ) ( ) 2011 HSC Mathematics Solutions ( 6) ( ) ( ) ( ) π π. αβ = = 2. α β αβ. Question 1. (iii) 1 1 β + (a) (4 sig. fig.

ASSERTION AND REASON

A Review of Complex Arithmetic

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

National Quali cations

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

National Quali cations

مسابقة في الكيمياء االسم: المدة ساعتان الرقم:

Session : Plasmas in Equilibrium

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

1997 AP Calculus AB: Section I, Part A

The Matrix Exponential

المادة: الریاضیات الشھادة: المتوسطة نموذج رقم -۱- قسم : الریاضیات

STIRLING'S 1 FORMULA AND ITS APPLICATION

EAcos θ, where θ is the angle between the electric field and

The Matrix Exponential

MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A, B and C.

2008 AP Calculus BC Multiple Choice Exam

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

GRADE 12 JUNE 2016 MATHEMATICS P2

5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd

VICTORIA JUNIOR COLLEGE Preliminary Examination. Paper 1 September 2015

Calculus & analytic geometry

page 11 equation (1.2-10c), break the bar over the right side in the middle

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

This exam is formed of three exercises The use of a non-programmable calculator is recommended

Chapter 3 Fourier Series Representation of Periodic Signals

Section 11.6: Directional Derivatives and the Gradient Vector

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Mock Exam 2 Section A

Probability & Statistics,

ln x = n e = 20 (nearest integer)

ENJOY MATHEMATICS WITH SUHAAG SIR

Ordinary Differential Equations

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

On the approximation of the constant of Napier

1 1 1 p q p q. 2ln x x. in simplest form. in simplest form in terms of x and h.

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Homework 11. This homework is due November 17, 2014, at 12:00 noon.

This exam is formed of three exercises in three pages. The use of non-programmable calculators is recommended.

10. Joint Moments and Joint Characteristic Functions

Restricted Factorial And A Remark On The Reduced Residue Classes

GRADE 12 JUNE 2017 MATHEMATICS P2

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

Washington State University

An Introduction to Asymptotic Expansions

Solution to 1223 The Evil Warden.

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Linear Algebra Existence of the determinant. Expansion according to a row.

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

This exam is formed of three exercises in three pages. The use of a non-programmable calculator is allowed

SOLUTIONS TO CHAPTER 2 PROBLEMS

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C.

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

اهتحانات الشهادة الثانىية العاهة الفرع: علىم الحياة هسابقة في هادة الفيسياء الرقن:

Chapter 4 - The Fourier Series

Exercises for lectures 23 Discrete systems

This exam is formed of four exercises in four pages The use of non-programmable calculator is recommended

Calculus II (MAC )

(Reference: sections in Silberberg 5 th ed.)

Math 34A. Final Review

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Statistics 3858 : Likelihood Ratio for Exponential Distribution

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

This exam is formed of four exercises in four pages numbered from 1 to 4 The use of non-programmable calculator is recommended

Transcription:

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة االمتحانات امتحانات الشهادة الثانوية العامة فرع: العلوم العامة االسم: الرقم: مسابقة في مادة الرياضيات المدة أربع ساعات عدد المسائل: ست مالحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرش ح اإلجابة بالترتيب الذي يناسبه ( دون االلتزام بترتيب المسائل الواردة في المسابقة(. دورة العام االستثنائي ة الثالثاء آب I- ( poits) I th tabl blow, oly o of th proposd aswrs to ach qustio is corrct. Writ dow th umbr of ach qustio ad giv, with justificatio, th aswr corrspodig to it. Qustios Aswrs a b c d Th particular solutio f() of th diffrtial quatio y '' + y = such that f () = ad f ' (π) = is si si cos si cos For all >, t dt lim = If f is a odd fuctio,cotiuous ovr IR ad such that f ()d, th f ()d Lt M with affi z (z ) b a variabl poit i th compl pla rfrrd to a dirct orthoormal systm. If z z is ral, th M movs o: th circl with ctr O ad radius cpt th poit with affi th -ais cpt th poit with affi th li with quatio y = th y-ais (;)

II- ( poits) I th spac rfrrd to a dirct orthoormal systm O; i, j,k, cosidr th poits E ( ; ; ), F( ; ; ), ad th li (d) with paramtric quatios = t, y = t +, z = t whr t is a ral paramtr. Dot by (P) th pla dtrmid by th poit F ad th li (d). ) Vrify that E is o (d). ) Show that y + = is a quatio of (P). ) Cosidr i th pla (P) th circl (C) with ctr F ad radius FE. a- Dtrmi th coordiats of H, th orthogoal projctio of F o (d). b- Dtrmi th coordiats of L, th scod poit of itrsctio of (d) ad (C). c- Writ a systm of paramtric quatios of th bisctor of th agl EFL. ) Lt (Q) b th pla cotaiig (d) ad prpdicular to (P). Dot by ( ) th prpdicular bisctor of th sgmt [EL] i th pla (Q). Writ a systm of paramtric quatios of ( ). III- ( poits) A ur cotais whit balls ad black balls. A gam cosists of two coscutiv drawigs as follows: A ball is slctd radomly i th first drawig. If th ball slctd is whit, it is put back i th ur; othrwis, it is kpt outsid th ur. Two balls ar slctd simultaously ad radomly i th scod drawig. Cosidr th followig vts: W: «Th ball slctd i th first drawig is whit» E: «Th balls slctd i th scod drawig ar whit» F: «Th balls slctd i th scod drawig ar black» G: «Th balls slctd i th scod drawig ar of diffrt colors». ) Calculat P(E/W) ad P(E / W). Dduc that P(E) = 6 9. ) Calculat P(F) ad P(G). ) Kowig that th balls slctd i th scod drawig hav th sam color, calculat th probability that th ball slctd i th first drawig is black. ) I this part, w mark - poits for ach black ball slctd, ad + poits for ach whit ball slctd. Dot by S th sum of poits markd for th two balls slctd i th scod drawig. Calculat th probability that S is positiv.

IV- ( poits) Th pla is rfrrd to a dirct orthoormal systm (O ; i, j). Dot by (C) th circl with ctr I(; ) ad radius, ad by (d) th li with quatio y =. Lt L( ; ) b a variabl poit o (C). Dot by N th orthogoal projctio of L o (d) ad by M th midpoit of sgmt [LN]. ) Writ a quatio of (C). ) a- Dtrmi th coordiats of M i trms of α ad β. b- As L movs o (C), prov that M movs o th llips (E) with quatio c- Draw (E). ) Lt (P) b th parabola with vrt V (; ) ad focus F;. a- Show that y is a quatio of (P). b- Draw (P) i th sam systm as (E). ) a- Calculat d. y. b- Dduc th ara of th rgio that is abov th -ais ad boudd by (E) ad (P). ) Lt G ( ; ) b a poit o (P) ad ( ) th tagt at G to (P). Dot by H th poit of (P) whr th tagt to (P) is prpdicular to ( ). Prov that G, H ad F ar colliar. V- ( poits) Cosidr a dirct quilatral triagl ODA with sid qual to. Lt R b th rotatio with ctr O ad agl. Dot by B = R (A), D'= R (D). Lt C b th poit so that D = R(C). (C is th pr-imag of D) ) a- Mak a figur. b- Show that O is th midpoit of [CD'] ad that BC=. ) a- Justify that (AC) is prpdicular to (BD) ad that AC = BD. b- Show that (AD) is paralll to (BC). ) Dot by E th poit of itrsctio of lis (AC) ad (BD). Lt h b th dilatio with ctr E that trasforms A oto C. a- Dtrmi h (D). b- Calculat th ratio of h. ) Lt L b th midpoit of [AD] ad F = h (L). Show that O, E, F ad L ar colliar. ) Lt R b th rotatio with ctr E ad agl. Cosidr S = h R. a- Dtrmi th atur of S ad so its lmts. b- Prov that S (A) = B.

VI- (7 poits) A- Lt h b th fuctio dfid o IR as h(). Dot by (C) its rprstativ curv i a orthoormal systm. ) a- Dtrmi lim h(). b- Dtrmi lim h() ad show that th li (d) with quatio y = is a asymptot to (C). ) a- Calculat h () ad st up th tabl of variatios of h. b- Draw (C) ad (d). c- Dduc that for all. B- Lt f b th fuctio dfid as f (). Dot by C its rprstativ curv i aothr orthoormal systm. ) Show that f is dfid ovr IR. ) Dtrmi th asymptots to C. ) Vrify that f () ad st up th tabl of variatios of f. ) a- Writ a quatio of (T), th tagt toc at th poit E with abscissa. b- Vrify that ( ) f. c- Study, accordig to th valus of, th rlativ positios of C with rspct to (T). d- Draw C ad (T). C- For all atural umbrs, dfi th squc ) Show that th squc (u ) is icrasig. ) a- For, vrify that f (). b- Is th squc (u ) covrgt? Justify. (u ) as u f d.

Aswr Ky- Math SG Scod Sssio - QI Aswrs N y= Acos+Bsi. f () = A=. f ()= Asi+Bcos. f '(π)= B =. b) t dt (Idtrmiat). L H.R. lim t dt lim lim. f ()d f ()d f ()d f ()d. a) z z z ral th which givs z.z z z z.z z z z z z ad z z. Thrfor, M movs o th -ais cpt poit with affi. b) c) QII Aswrs N For t = ; E is a poit o (d). (t ) (t + ) + = + + = ; F yf thus F (P) th th giv quatio is that of (P). a FHt ;t ; t ; FH V(d) ; (t ) (t ) t ; t th 9 H ; ;. 9 9 9 9 b H is th midpoit of EL thus L ; ;. 9 9 9 c 8 (FH) is th bisctor of EFL. FM mfh m, y m, z m. 9 9 9 A dirctor vctor of th prpdicular bisctor is P (; ;) ad th prpdicular bisctor passs i poit H; th systm of paramtric quatios is: ; y ;z whr λ is a ral paramtr. 9 9 9

QIII Aswrs N PE 7 C W C ; P E P(F) P(F W) P(F W) 7 7 P W 6 C 6 ; P(E) P(W E) P(W E). W C 7 7 9 ; P(G) P(E) P(F) 6 6. 7 C G. P W G P(W).P 7 C 8 W G PG P(G) 6 8 7 P(S ) P(S ) 7 7 QIV Aswrs N y. L ;, N ; M ;. a b sic L is o (C). Thus M movs o (E). c a p SF thus p =.y-ais is th focal ais, thrfor OR: Th dirctri is th li (D) with quatio y y. y. Dist(R,(D)) = RF with R(; y) (P) y y y. b S figur i c. a d. b Ara = ab d. y = f() = thus f '( ) =, f '( H) thus H ;. 6 GH GF thrfor G, H t F ar colliar.

QV Aswrs N a b CÔD DÔD 9 th C, O, D ar colliar ad OC = OD = OD, th O is th midpoit of [CD ]. OB = OC = OD thrfor triagl CBD is right at B. Pythagoras givs : CB CD' BD'. a R(C) = D t R(A) = B (AC) is prpdicular to (BD) ad AC = BD. b R(D) = D, R(A) =B thus AD prpdicular to BD ad (BC) is prpdicular to (BD ), th (AD) ad (BC) ar paralll. a h(a) = C ad (AD) ar paralll to (BC), thrfor h(d) = B. b BC KDA So: K. F midpoit of [BC] ; E, F ad L ar colliar. (OF) ad (OL) ar prpdicular to (BC) O, F ad L ar colliar. a S is th similitud S (E,, ). b S (A) = hr (A) h(r (A)) h(d) Bsic EAD is a right isoscls triagl. QVI Aswrs N a lim h() lim. A b lim h() lim ( ) ad (d) is a asymptot to (C). lim[h() y] lim, a h ().

b h() lim thus(c) has a vrtical asymptotic dirctio. c Th miimum of h() is, so h(), th, thus. h() ; so thus D f lim f () lim, lim f () lim. Doc ls droits d'équatios y = t y = sot du asymptots à C. f (). a y = +. b ( )( ) ( ) f () ( ) ( ). c For ; f() ( ),, C itrcpt (T). For ; f() ( ) For = ; C is abov (T). C is blow (T). B d C. u u f d f d f d f d f d kowig f th a b f d ; So (u ) is icrasig. f () thus f () for all. f ()d d si c th u ; lim u lim ; lim u thrfor u is divrgt.